If it's not what You are looking for type in the equation solver your own equation and let us solve it.
33x^2-31x=0
a = 33; b = -31; c = 0;
Δ = b2-4ac
Δ = -312-4·33·0
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-31}{2*33}=\frac{0}{66} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+31}{2*33}=\frac{62}{66} =31/33 $
| X+e=180 | | 14g+-8g=-18 | | F(7)=|9-4x| | | 3x+6+4x+21=90 | | 9x²=21x | | 9y+6=8y-8+12 | | 9-(4.4+4)=r | | 5a+3a+44=180 | | 10=2(u+3) | | 6y²-54y=0 | | g8+12=16 | | 4x+(180-4x)=180 | | 126=18/2h | | 12p+p-5p=16 | | 0=-16t^2+192t-176 | | F(-2)=-2f(4)=-8 | | 7x-15+5=4x+11 | | 5+4x-7x=4x | | 6n^2+17n+5=0 | | -8b+6b+15b=-13 | | 3(2x+5=4(x-3) | | 3/4(x)+5=11 | | 176=-16t^2+192t | | 2.6+(4/2)=s | | 176=-16t^2+196t | | 20w-6=10w+4 | | 16r-10r-4=20 | | 160.67=2000(r)8/12 | | 20=4(s+3) | | -2(v6)=-8 | | 2x+3=6x+25 | | 26=z+316/20 |